World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROPERTIES OF HEAVY AND SUPERHEAVY NUCLEI IN SUPERNOVA ENVIRONMENTS

    https://doi.org/10.1142/9781848162389_0005Cited by:0 (Source: Crossref)
    Abstract:

    The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner–Seitz cell approximation. We investigate the stability of nuclei with respect to α and β decay. We find that the presence of the electrons leads to stabilizing effects for α decay at high electron densities. Furthermore, the screening effect shifts the proton drip-line to more proton-rich nuclei, and the stability line with respect to β decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.