World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMBINING SEQUENCE AND STRUCTURAL PROFILES FOR PROTEIN SOLVENT ACCESSIBILITY PREDICTION

    https://doi.org/10.1142/9781848162648_0017Cited by:2 (Source: Crossref)
    Abstract:

    Solvent accessibility is an important structural feature for a protein. We propose a new method for solvent accessibility prediction that uses known structure and sequence information more efficiently. We first estimate the relative solvent accessibility of the query protein using fuzzy mean operator from the solvent accessibilities of known structure fragments that have similar sequences to the query protein. We then integrate the estimated solvent accessibility and the position specific scoring matrix of the query protein using a neural network. We tested our method on a large data set consisting of 3386 non-redundant proteins. The comparison with other methods show slightly improved prediction accuracies with our method. The resulting system does need not be re-trained when new data is available. We incorporated our method into the MUPRED system, which is available as a web server at http://digbio.missouri.edu/mupred.