World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE RECONSTRUCTION OF THE MUS MUSCULUS GENOME-SCALE METABOLIC NETWORK MODEL

    https://doi.org/10.1142/9781848163324_0008Cited by:24 (Source: Crossref)
    Abstract:

    Genome-scale metabolic modeling is a systems-based approach that attempts to capture the metabolic complexity of the whole cell, for the purpose of gaining insight into metabolic function and regulation. This is achieved by organizing the metabolic components and their corresponding interactions into a single context. The reconstruction process is a challenging and laborious task, especially during the stage of manual curation. For the mouse genome-scale metabolic model, however, we were able to rapidly reconstruct a compartmentalized model from well-curated metabolic databases online. The prototype model was comprehensive. Apart from minor compound naming and compartmentalization issues, only nine additional reactions without gene associations were added during model curation before the model was able to simulate growth in silico. Further curation led to a metabolic model that consists of 1399 genes mapped to 1757 reactions, with a total of 2037 reactions compartmentalized into the cytoplasm and mitochondria, capable of reproducing metabolic functions inferred from literatures. The reconstruction is made more tractable by developing a formal system to update the model against online databases. Effectively, we can focus our curation efforts into establishing better model annotations and gene–protein–reaction associations within the core metabolism, while relying on genome and proteome databases to build new annotations for peripheral pathways, which may bear less relevance to our modeling interest.