World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Physics of Viral Infectivity: Matching Genome Length with Capsid Size

    https://doi.org/10.1142/9781848164666_0009Cited by:0 (Source: Crossref)
    Abstract:

    In this work, we review recent advances in the field of physical virology, presenting both experimental and theoretical studies on the physical properties of viruses. We focus on the double-stranded DNA (dsDNA) bacteriophages as model systems for all of the dsDNA viruses both prokaryotic and eukaryotic. Recent studies demonstrate that the DNA packaged into many dsDNA viral capsids is highly pressurized, which provides a force for the first step of passive injection of viral DNA into either bacterial or eukaryotic cells. Moreover, specific studies on capsid strength show a strong correlation between genome length and capsid size and robustness. The implications of these newly appreciated physical properties of a viral particle with respect to the infection process are discussed.