World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The chiral phase transition temperature in (2+1)-flavor QCD

    https://doi.org/10.1142/9789811219313_0115Cited by:1 (Source: Crossref)
    Abstract:

    The chiral phase transition temperature T0cT0c is a fundamental quantity of QCD. To determine this quantity we have performed simulations of (2 + 1)-flavor QCD using the Highly Improved Staggered Quarks (HISQ/tree) action on Nτ=6, 8 and 12 lattices with aspect ratios Nσ/Nτ ranging from 4 to 8. In our simulations we fix the strange quark mass to its physical value mphys, and vary the values of two degenerate light quark masses ml from mphys/20 to mphys/160 which correspond to a Goldstone pion mass mπ ranging from 160 MeV to 55 MeV in the continuum limit. We employ two estimators T60 and Tδ to extract the chiral phase transition temperature T0c, after taking the chiral limit, thermodynamic limit and continuum limit, we present our current estimate for T0c=132+36MeV.