World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Axial coordination reactions with nitrogenous bases and determination of equilibrium constants for zinc tetraarylporphyrins containing four β,β′-fused butano and benzo groups in nonaqueous media

    This paper is part of the 2019 Women in Porphyrin Science special issue.

    https://doi.org/10.1142/9789811223556_0114Cited by:0 (Source: Crossref)
    Abstract:

    The axial coordination properties of six zinc tetraarylporphyrins with seven different nitrogenous bases were examined in CH2Cl2 for derivatives containing four β,β′-fused butano or benzo groups and the equilibrium constants (logK) determined using spectral titration methods. The examined compounds are represented as butano(YPh)4PorZn and benzo(YPh)4PorZn, where Por is the porphyrin dianion and Y is a CH3, H or Cl substituent on the para-position of each meso-phenyl ring of the macrocycle. The initial four-coordinate butano- and benzoporphyrins will axially bind one nitrogenous base to form five-coordinate derivatives in CH2Cl2 and this leads to a 4–22 nm red-shift of the Soret and Q bands. The logK values range from 1.98 to 4.69 for butano(YPh)4PorZn and from 3.42 to 5.36 for benzo(YPh)4PorZn, with the exact value depending upon the meso and β-substituents of the porphyrin and the conjugate acid dissociation constants (pKa) of the nitrogenous base.