World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Chapter 11: Signal processing with Lévy information

    This chapter was originally published as: D. C. Brody, L. P. Hughston & X. Yang (2013) Signal Processing with Lévy Information. Proceedings of the Royal Society A 469, 20120433:1–23. Reprinted with kind permission from The Royal Society.

    https://doi.org/10.1142/9789811246494_0011Cited by:0 (Source: Crossref)
    Abstract:

    Lévy processes, which have stationary independent increments, are ideal for modelling the various types of noise that can arise in communication channels. If a Lévy process admits exponential moments, then there exists a parametric family of measure changes called Esscher transformations. If the parameter is replaced with an independent random variable, the true value of which represents a ‘message’, then under the transformed measure the original Lévy process takes on the character of an ‘information process’. In this paper we develop a theory of such Lévy information processes. The underlying Lévy process, which we call the fiducial process, represents the ‘noise type’. Each such noise type is capable of carrying a message of a certain specification. A number of examples are worked out in detail, including information processes of the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse Gaussian and normal inverse Gaussian type. Although in general there is no additive decomposition of information into signal and noise, one is led nevertheless for each noise type to a well-defined scheme for signal detection and enhancement relevant to a variety of practical situations.