World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Generalizing Few-Shot Classification of Whole-Genome Doubling Across Cancer Types

    This work is supported by the Simons Foundation and the Google Cloud Research Credits program with the award GCP19980904.

    https://doi.org/10.1142/9789811250477_0014Cited by:2 (Source: Crossref)
    Abstract:

    The study and treatment of cancer is traditionally specialized to the cancer’s site of origin. However, certain phenotypes are shared across cancer types and have important implications for clinical care. To date, automating the identification of these characteristics from routine clinical data - irrespective of the type of cancer - is impaired by tissue-specific variability and limited labeled data. Whole-genome doubling is one such phenotype; whole-genome doubling events occur in nearly every type of cancer and have significant prognostic implications. Using digitized histopathology slide images of primary tumor biopsies, we train a deep neural network end-to-end to accurately generalize few-shot classification of whole-genome doubling across 17 cancer types. By taking a meta-learning approach, cancer types are treated as separate but jointly-learned tasks. This approach outperforms a traditional neural network classifier and quickly generalizes to both held-out cancer types and batch effects. These results demonstrate the unrealized potential for meta-learning to not only account for between-cancer type variability but also remedy technical variability, enabling real-time identification of cancer phenotypes that are too often costly and inefficient to obtain.