World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROBABILISTIC EXTREME TEMPERATURE FORECASTS USING THE BAYESIAN PROCESSOR OF ENSEMBLE OVER TAIWAN

    https://doi.org/10.1142/9789811275449_0009Cited by:0 (Source: Crossref)
    Abstract:

    A statistical post-processing (SPP) system called Bayesian Processor of Ensemble (BPE) is demonstrated in this study for the generation of extended-range probabilistic extreme temperature forecasts at selected weather stations in Taiwan. BPE is based on the Bayes’ Theorem, and comprises three main components: (1) the estimation of the prior, the climatic distribution of the predictand; (2) the generation of the likelihood distribution, capturing the relationship between the predictors and predictand, and (3) the fusion of the prior and likelihood distributions for the generation of the predictive (or posterior) distribution, given the latest operational ensemble forecasts. The Bayesian use of the prior distribution allows BPE to optimally calibrate, with a maximum level of informativeness, the predictive distribution, even under operational constraints such as limitations in the size of the reforecast data sample, and low skill in raw extended-range ensemble forecasts.