World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Hydrodynamization and resummed viscous hydrodynamics

    To cite this article, please refer to its earlier version published in the International Journal of Modern Physics E, Volume 33, No. 10, 2430004 (2024), DOI:10.1142/S0218301324300042

    https://doi.org/10.1142/9789811294679_0003Cited by:0 (Source: Crossref)
    Abstract:

    In this paper, I review our current understanding of the applicability of hydrodynamics to modeling the quark–gluon plasma (QGP), focusing on the question of hydrodynamization/ thermalization of the QGP and the anisotropic hydrodynamics (aHydro) far-from-equilibrium hydrodynamic framework. I discuss the existence of far-from-equilibrium hydrodynamic attractors and methods for determining attractors within different hydrodynamical frameworks. I also discuss the determination of attractors from exact solutions to the Boltzmann equation in relaxation time approximation and effective kinetic field theory applied to quantum chromo-dynamics. I then present comparisons of the kinetic attractors with the attractors obtained in standard second-viscous hydrodynamics frameworks and aHydro. I demonstrate that, due to the resummation of terms to all orders in the inverse Reynolds number, the aHydro framework can describe both the weak- and strong-interaction limits. I then review the phenomenological application of aHydro to relativistic heavy-ion collisions using both quasiparticle aHydro and second-order viscous aHydro. The phenomenological results indicate that aHydro provides a controlled extension of dissipative relativistic hydrodynamics to the early-time far-from-equilibrium stage of heavy-ion collisions. This allows one to better describe the data and to extract the temperature dependence of transport coefficients at much higher temperatures than linearized second-order viscous hydrodynamics.