World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BIOLOGICAL LATTICE GAS MODELS

    https://doi.org/10.1142/9789812567840_0014Cited by:5 (Source: Crossref)
    Abstract:

    Modelling pattern formation and morphogenesis are fundamental problems in biology. One useful approach is lattice gas cellular automata (LGCA) model. This paper reviews several stochastic lattice gas models for pattern formation in myxobacteria fruiting body morphogenesis and vertebrate limb skeletogenesis.

    The fruiting body formation in myxobacteria is a complex morphological process that requires the organized, collective effort of tens of thousands of cells. It provides new insight into collective microbial behavior since myxobacteria morphogenic pattern formation is governed by cell-cell interactions rather than chemotaxis. We describe LGCA models for the aggregation stage of the fruiting body formation.

    Limb bud precartilage mesenchymal cells in micromass culture undergo chondrogenic pattern formation, which results in the formation of regularly-spaced "islands" of cartilage analogous to the cartilage primordia of the developing limb skeleton. An LGCA model, based on reaction-diffusion coupling and cell-matrix adhesion, is described for this process.