World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN ANALYTICAL MODEL TO ESTIMATE LOAD CAPACITY POSSESSED BY SUPPORTING SOIL FOR PILED RAFT FOUNDATIONS

    This work is supported by the Chinese Civil Air Defence Office.

    https://doi.org/10.1142/9789812701480_0047Cited by:0 (Source: Crossref)
    Abstract:

    While piled raft foundations are widely adopted in the construction of tall or multistory buildings, an accurate estimation and control of load capacity possessed by supporting soil become essential for the safety of buildings and construction cost reduction, especially in the case on soft soil subgrades. This paper presents an effective analytical model to estimate load capacity possessed by supporting soil for piled raft foundations. In this approach the bending plate is approximately assumed to have linear elastic properties and is modeled by the generalized conforming finite element method while the supporting soil subgrade is modeled by the finite layer method(FLM). Each pile is represented by a single element, and its nonlinear stiffness is evaluated through a load vs. pile head displacement curve obtained from static loading tests, resulting in the governing system of equations for plate-pile-soil interaction problems. The FLM is not only capable of representing the layered subgrade behavior, but it is also of low computation cost. Several real piled raft foundations on the soft soil subgrade have been analysed. The numerical results indicate that, in general, for tall buildings, the load capacities possessed by supporting soil are about 8~15% of the whole one; and that for multistory buildings, where the piles are often used to prevent excessive settlements, are often more than 25%. It can be seen from the numerical results that the load capacity possessed by supporting soil is more affected by stiffness of piles, and increases with the settling of the building, its full utilization in design would evidently reduce the cost of a piled raft foundation construction.