World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Exploring and Simulating Chaotic Advection: A Difference Equations Approach

    https://doi.org/10.1142/9789812709691_0035Cited by:2 (Source: Crossref)
    Abstract:

    This paper explores the chaotic properties of an advection system expressed in difference equations form. In the beginning the Aref's blinking vortex system is examined. Then several new lines are explored related to the sink problem (one central sink, two symmetric sinks, eccentric sink and others). Chaotic forms with or without space contraction are presented, analyzed and simulated. Several chaotic objects are formulated especially when special rotation angles or a complex sinus rotation angle are introduced in the rotation-translation difference equations. Very interesting chaotic forms arise when elliptic rotation-translation equations are applied. The simulated chaotic images and attractors express several vortex-like forms resulting in various situations and especially in fluid dynamics.