World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789812770288_0007Cited by:1 (Source: Crossref)
Abstract:

The XENON experiment aims at the direct detection of dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering off Xe nuclei. The final detector will have a fiducial mass of 1000 kg, distributed in 10 independent liquid xenon time projection chambers (TPCs). Such an experiment will be able to probe the lowest interaction cross-section predicted by SUSY models. The TPCs are operated in dual (liquid/gas) phase, to allow a measurement of nuclear recoils down to < 10 keV energy, via simultaneous detection of the ionization, through secondary scintillation in the gas, and primary scintillation in the liquid. The distinct ratio of primary to secondary scintillation for nuclear recoils from WIMPs (or neutrons), and for electron recoils from background, is used for the event-by-event discrimination. As part of the R&D phase, we built a first XENON module (XENON10) with 15 kg fiducial mass and installed it underground, at the Laboratori Nazionali del Gran Sasso (LNGS), on March 2006. XENON10 has accumulated an exposure of more than 30 live days, operating with quite stable condition. A preliminary analysis of the background data is presented here.