MONOTONICITY OF DYNAMICAL SYSTEMS AND THEIR DISCRETIZATIONS
Monotonicity of dynamical systems is proven to be a very powerful means to discover long term behaviour of continuous-time and discrete-time dynamical systems. In this paper we consider monotone continuous-time dynamical systems and their discretizations with Runge-Kutta methods. We study the parameters of the discretization method that guarantee monotone discrete-time system as a result. In case of a general class of polyhedral order cones we conclude a simple and practically useful formula for the step sizes that ensure discrete monotonicity.