World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Wave kinetic description of Bose Einstein condensates

    https://doi.org/10.1142/9789812772206_0015Cited by:0 (Source: Crossref)
    Abstract:

    A kinetic approach to cold atoms and Bose-Einstein condensates is explored. This approach is based on the Wigner transformation, which allows for a classical phase space representation of a quantum system. Wave kinetic equations exactly equivalent to the Gross Pitaevskii equation are considered, and various approximations are discussed. In the quasi-classical limit, we obtain the particle number conservation equation. Several different examples of application of this method are given. They include, self-phase modulation of a BE condensate, modulational instability and wakefield generation by a cold atom beam in a thermal background, and kinetic dispersion relation of Bogoliubov oscillations with collisionless Landau damping.