World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STOCHASTIC GAMES OF CONTROL AND STOPPING FOR A LINEAR DIFFUSION

    Work supported in part by the National Science Foundation Grant NSF-DMS-06-01774.

    https://doi.org/10.1142/9789812772558_0007Cited by:6 (Source: Crossref)
    Abstract:

    We study three stochastic differential games. In each game, two players control a process X = {Xt, 0 ≤ t < ∞} which takes values in the interval I = (0,1), is absorbed at the endpoints of I, and satisfies a stochastic differential equation

    The control functions α(·) and β(·) are chosen by players 𝔄 and 𝔅, respectively.

    In the first of our games, which is zero-sum, player 𝔄 has a continuous reward function u : [0,1] → ℝ. In addition to α(·), player 𝔄 chooses a stopping rule τ and seeks to maximize the expectation of u(Xτ); whereas player 𝔅 chooses β(·) and aims to minimize this expectation.

    In the second game, players 𝔄 and 𝔅 each have continuous reward functions u(·) and v(·), choose stopping rules τ and ρ, and seek to maximize the expectations of u(Xτ) and v(Xρ), respectively.

    In the third game the two players again have continuous reward functions u(·) and v(·), now assumed to be unimodal, and choose stopping rules τ and ρ. This game terminates at the minimum τ∧ρ the stopping rules τ and ρ, and players 𝔄, 𝔅 want to maximize the expectations of u(Xτ∧ρ) and ν(Xτ∧ρ), respectively.

    Under mild technical assumptions we show that the first game has a value, and find a saddle point of optimal strategies for the players. The other two games are not zero-sum, in general, and for them we construct Nash equilibria.