HADRON SYSTEMATICS AND EMERGENT DIQUARKS
We briefly review a variety of theoretical and phenomenological indications for the probable importance of powerful diquark correlations in hadronic physics. We demonstrate that the bulk of light hadron spectroscopy can be organized using three simple hypotheses: Regge-Chew-Frautschi mass formulae, feebleness of spin-orbit forces, and energetic distinctions among a few different diquark configurations. Those hypotheses can be implemented in a semi-classical model of color flux tubes, extrapolated down from large orbital angular momentum L. We discuss refinements of the model to include the effects of tunneling, mass loading, and internal excitations. We also discern effects of diquark correlations in observed patterns of baryon decays. Many predictions and suggestions for further work appear.