COARSE-GRAINED OBSERVATION OF DISCRETIZED MAPS
We investigate why discretized versions fN of one-dimensional ergodic maps f : I → I behave in many ways similarly to their continuous counterparts. We propose to register observations of the N × N discretization fN on a coarse M × M grid, with N = cM, c being an integer. We prove that rounding errors behave like uniformly distributed random variables, and by assuming their independence, the M × M incidence matrix AM associated with the continuous map (indicating which of the M equal subintervals is mapped onto which) can be expected to be identical to the incidence matrix BN,M associated with the aforementioned coarse grid, if