World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Hierarchical Classification and Feature Reduction for Fast Face Detection

    https://doi.org/10.1142/9789812775320_0026Cited by:1 (Source: Crossref)
    Abstract:

    We present a two-step method to speed-up object detection systems in computer vision that use Support Vector Machines (SVMs) as classifiers. In the first step we build a hierarchy of classifiers. On the bottom level a simple and fast linear classifier analyzes the whole image and rejects large parts of the background. On the top level, a slower but more accurate classifier performs the final detection. We propose a new method for automatically building and training a hierarchy of classifiers. In the second step we apply feature reduction to the top level classifier by choosing relevant image features according to a measure derived from statistical learning theory. Experiments with a face detection system show that combining feature reduction with hierarchical classification leads to a speed-up by a factor of 335 with similar classification performance.