World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STUDYING INSTABILITY OF 3D COLLISIONLESS SYSTEMS ON STOCHASTIC TRAJECTORIES

    https://doi.org/10.1142/9789812778901_0036Cited by:1 (Source: Crossref)
    Abstract:

    A practical method for distinguishing stochastic and regular subsystems in the entire set of particles for numerical modeling of the development of physical instabilities in collisionless systems with self-consistent fields is proposed. The method of subdividing the phase space into subsystems is based on the comparison of the results of two computational experiments with identical initial conditions but different realizations of rounding errors. An example of establishing the spatial and temporal domains of the development of collective instability and determining the instability increments is offered by a gravitating disk.