World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LINEAR STABILITY ANALYSIS OF FORCE-FREE EQUILIBRIA LEADING TO QUASI-SINGLE-HELICITY STATES

    https://doi.org/10.1142/9789812778901_0038Cited by:0 (Source: Crossref)
    Abstract:

    An innovative argument is presented in order to explain the formation of Quasi-Single-Helicity (QSH) states in Reversed-Field-Pinches (RFPs) as result of a tearing perturbation of a force-free equilibrium. In particular it is shown that force-free equilibria with a piecewise constant ratio between the current density and the magnetic field can be tearing unstable to modes with helicity corresponding to the one observed during QSH states, whereas they are stable with respect to modes with other helicities. It is suggested that RFPs could reach such equilibria as a consequence of an evolution of the system from a relaxed Taylor state toward a non-reversed force-free state on resistive time scales.