CORRELATIONS AS A FUNCTION OF NUCLEON ASYMMETRY: THE LURE OF DRIPLINE PHYSICS
Experimental data describing elastic scattering of nucleons on Ca isotopes are employed to construct the nucleon self-energy at positive energies for these systems using a dispersive optical model analysis. Data below the proton Fermi energy, obtained from the (e, e′p) reaction and the energies of low-lying single-particle orbits are employed to complete the determination of the nucleon self-energy in a broad energy domain that includes a few hundred MeV above and below the Fermi energy. The present analyis allows an extrapolation to larger nucleon asymmetry δ that demonstrates that protons should become more correlated with increasing δ.