World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SPIN SUM RULES AND POLARIZABILITIES: RESULTS FROM JEFFERSON LAB

    https://doi.org/10.1142/9789812790804_0011Cited by:0 (Source: Crossref)
    Abstract:

    The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g1 at momentum transfer of 0.05 to 0.1 GeV2 but fail to reproduce the neutron data in the case of the generalized polarizability δLT (the δLT puzzle). New data have been taken on the neutron (3He), the proton and the deuteron at very low Q2 down to 0.02 GeV2. They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work.