SPIN SUM RULES AND POLARIZABILITIES: RESULTS FROM JEFFERSON LAB
The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g1 at momentum transfer of 0.05 to 0.1 GeV2 but fail to reproduce the neutron data in the case of the generalized polarizability δLT (the δLT puzzle). New data have been taken on the neutron (3He), the proton and the deuteron at very low Q2 down to 0.02 GeV2. They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work.