World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Insulin Resistance and Metabolic Syndrome

    https://doi.org/10.1142/9789812790811_0031Cited by:0 (Source: Crossref)
    Abstract:

    Metabolic syndrome (MS) is a common disorder that affects 25% of the American population. MS is characterized by obesity, hyperglycemia, hypertriglyceridemia, low HDL cholesterol levels, and hypertension. In general, MS is the result of insulin resistance and is linked to the pathogenesis of type 2 diabetes and cardiovascular disease (CVD). Genetic factors play important roles in the pathogenesis of MS and its endophenotypes. Ample studies have been carried out to dissect the genetics of MS, including hundreds of genome scans, animal quantitative trait loci (QTLs), and association studies. Like in other complex traits, gene–gene and gene–environment interactions, low penetrance, and genetic heterogeneity have made the MS gene hunting very challenging; on the other hand, factor analyses, replicated linkage results, and high-throughput association studies have yielded promising results. In this chapter, we integrate pieces of the genetics of MS; technical issues such as linkage disequilibrium (LD) mapping and the parent-of-origin effect are also discussed.