World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FOUR-WAVE INTERACTIONS IN SWAN

    https://doi.org/10.1142/9789812791306_0034Cited by:0 (Source: Crossref)
    Abstract:

    Several methods for computing the non-linear energy transfer due to resonant wave-wave interactions are implemented in an experimental version of the SWAN wave model. These methods and their mutual relationships (illustrating their evolution from one to the other) are described. Of these methods, two are addressed in some detail. Of the first, an approximate method called the modified SRIAM method, the accuracy and efficiency are numerically demonstrated for various directional spectra. The second, an exact method called the FD-RIAM, is up-graded from an earlier version (Hashimoto et al., 1998) on the basis of Komatsu and Masuda (2000) to solve an instability problem caused by singularities in the Boltzmann integral. The accuracy and stability of this exact method too are numerically investigated. This FD-RIAM, supplemented with all other processes of generation and dissipation (and triad wave-wave interactions) in SWAN, is applied to the shallow water Lake George in Australia.