ANTICIPATORY COGNITIVE SYSTEMS: A THEORETICAL MODEL
This paper deals with the problem of understanding anticipation in biological and cognitive systems. It is argued that a physical theory can be considered as biologically plausible only if it incorporates the ability to describe systems which exhibit anticipatory behaviors. The paper introduces a cognitive level description of anticipation and provides a simple theoretical characterization of anticipatory systems on this level. Specifically, a simple model of a formal anticipatory neuron and a model (i.e. the τ-mirror architecture) of an anticipatory neural network which is based on the former are introduced and discussed. The basic feature of this architecture is that a part of the network learns to represent the behavior of the other part over time, thus constructing an implicit model of its own functioning. As a consequence, the network is capable of self-representation; anticipation, on a macroscopic level, is nothing but a consequence of anticipation on a microscopic level. Some learning algorithms are also discussed together with related experimental tasks and possible integrations. The outcome of the paper is a formal characterization of anticipation in cognitive systems which aims at being incorporated in a comprehensive and more general physical theory.