ORIENTATION DYNAMICS OF MAGNETORHEOLOGICAL FLUIDS SUBJECT TO ROTATING EXTERNAL FIELDS
The formation and orientation of field-induced structures in magnetorheological (MR) fluids subject to rotating magnetic fields have been studied using two optical methods: scattering dichroism and small angle light scattering (SALS). The SALS patterns show how these chain-like aggregates follow the magnetic field with the same frequency but with a retarded phase angle for all the frequencies measured. Using scattering dichroism two different behaviors for both, dichroism and phase lag, are found below or above a critical frequency. Experimental results have been reproduced by a simple model considering the torques balance on the chain-like aggregates.