ATOMIC-SCALE STRUCTURE: FROM SURFACES TO NANOMATERIALS
This presentation will sketch past progress and explore possible future directions in the atomic-scale structure determination of surfaces, interfaces and nanostructures. Atomic-scale structure is the basis of understanding for a wide range of phenomena in physics, chemistry, materials science and other fields, and needs to be determined from experiment, by efficient theoretical and computational interpretation.
Comparisons will be made between different available techniques for surface structure determination, in particular regarding their relative capabilities. Highlighted will be Scanning Tunneling Microscopy and Low-Energy Electron Diffraction. Both of these techniques are capable of detailed atomic-scale structure determination of nanostructures, by comparison between experiment and theoretical simulation.
Examples will be given to illustrate recent progress in structure determination of several nanostructures, including buckminsterfullerenes (C60), carbon nanotubes (CNTs) and silicon nanowires (SiNWs).
Note from Publisher: This article contains the abstract only.