World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON RANDOM KNOTS

    https://doi.org/10.1142/9789812796172_0013Cited by:3 (Source: Crossref)
    Abstract:

    In this paper, we consider knotting of Gaussian random polygons in 3-space . A Gaussian random polygon is a piecewise linear circle with n edges in which the length of the edges follows a Gaussian distribution. We prove a continuum version of Kesten's Pattern Theorem for these polygons, and use this to prove that the probability that a Gaussian random polygon of n edges in 3-space is knotted tends to one exponentially rapidly as n tends to infinity . We study the properties of Gaussian random knots, and prove that the entanglement complexity of Gaussian random knots gets arbitrarily large as n tends to infinity. We also prove that almost all Gaussian random knots are chiral.