World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN EVOLUTIONARY APPROACH TO THE USE OF NEURAL NETWORKS IN THE SEGMENTATION OF HANDWRITTEN NUMERALS

    https://doi.org/10.1142/9789812797681_0012Cited by:0 (Source: Crossref)
    Abstract:

    Neural networks are now widely and successfully used in the recognition of handwritten numerals. Despite their wide use in recognition, neural networks have not seen widespread use in segmentation. Segmentation can be extremely difficult in the presence of connected numerals, fragmented numerals, and background noise, and its failure is a principal cause of rejected and incorrectly read documents. Therefore, strategies leading to the successful application of neural technologies to segmentation are likely to yield important performance benefits. In this paper we identify problems that have impeded the use of neural networks in segmentation and describe an evolutionary approach to applying neural networks in segmentation. Our approach, based upon the use of monotonic fuzzy valued decision functions computed by feed-forward neural networks, has been successfully employed in a production system.