World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

QUALITY OF COINCIDENCE DETECTION AND ITD TUNING: A THEORETICAL FRAMEWORK

    https://doi.org/10.1142/9789812818140_0033Cited by:1 (Source: Crossref)
    Abstract:

    Coincidence detector neurons increase their firing rate significantly if the input changes from random to coherent. Similarly, neurons in the avian nucleus laminaris vary their firing rate as a function of the interaural time difference (ITD). In both cases, neurons transform temporally coded input into a rate-coded output. To characterize the quality of this transformation we define a new measure, which explicitly takes noisy spike output of neurons into account. As an application, we investigate the coincidence detection properties of an integrate-and-fire (I&F) neuron in dependence on internal parameters and input statistics. We show that there is an optimal threshold and, furthermore, that there is a broad range of near-optimal threshold values. The theoretical results are applied to ITD-tuning of neurons in the laminar nucleus of the barn owl.