World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NOVEL APPLICATION OF PASSIVE STANDOFF RADIOMETRY FOR THE MEASUREMENT OF EXPLOSIVES

    https://doi.org/10.1142/9789812835925_0006Cited by:0 (Source: Crossref)
    Abstract:

    The objective of this paper is to show that explosives may potentially be detected by passive standoff FTIR radiometry. It is demonstrated that many explosives exhibit a signature (fingerprint) in the longwave infrared (LWIR) region (i.e., 8 – 14 μm). Simulations using the radiative transfer model, MODTRAN4, clearly suggest that such materials can be identified when a thermal contrast exists between the material and its environment. The explosives considered in this study include octogen (HMX), trinitrotoluene (TNT), cyclonite (RDX), and the plastic explosives, C-4 and Detasheet-C. In addition, passive FTIR measurements of HMX have been performed in the field at standoff distances up to 60 m. The development of a passive standoff detection capability based on FTIR radiometry may be a potentially useful addition to the arsenal of measurement techniques that currently exist for the detection and identification of explosive threats.