ADVANCED HYPERSPECTRAL ALGORITHMS FOR TACTICAL TARGET DETECTION AND DISCRIMINATION
Region-of-interest cueing by hyperspectral imaging systems for tactical reconnaissance has emphasized wide area coverage, low false alarm rates, and the search for manmade objects. Because they often appear embedded in complex environments and can exhibit large intrinsic spectral variability, these targets usually cannot be characterized by consistent signatures that might facilitate the detection process. Template matching techniques that focus on distinctive and persistent absorption features, such as those characterizing gases or liquids, prove ineffectual for most hardbody targets. High-performance autonomous detection requires instead the integration of limited and uncertain signature knowledge with a statistical approach. Effective techniques devised in this way using Gaussian models have transitioned to fielded systems. These first-generation algorithms are described here, along with heuristic modifications that have proven beneficial. Higher-performance Gaussian-based algorithms are also described, but sensitivity to parameter selection can prove problematical. Finally, a next-generation parameter-free non-Gaussian method is outlined whose performance compares favorably with the best Gaussian methods.