World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ADVANCED HYPERSPECTRAL ALGORITHMS FOR TACTICAL TARGET DETECTION AND DISCRIMINATION

    https://doi.org/10.1142/9789812835925_0024Cited by:0 (Source: Crossref)
    Abstract:

    Region-of-interest cueing by hyperspectral imaging systems for tactical reconnaissance has emphasized wide area coverage, low false alarm rates, and the search for manmade objects. Because they often appear embedded in complex environments and can exhibit large intrinsic spectral variability, these targets usually cannot be characterized by consistent signatures that might facilitate the detection process. Template matching techniques that focus on distinctive and persistent absorption features, such as those characterizing gases or liquids, prove ineffectual for most hardbody targets. High-performance autonomous detection requires instead the integration of limited and uncertain signature knowledge with a statistical approach. Effective techniques devised in this way using Gaussian models have transitioned to fielded systems. These first-generation algorithms are described here, along with heuristic modifications that have proven beneficial. Higher-performance Gaussian-based algorithms are also described, but sensitivity to parameter selection can prove problematical. Finally, a next-generation parameter-free non-Gaussian method is outlined whose performance compares favorably with the best Gaussian methods.