World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INFLUENCE OF ROOM TEMPERATURE ON THICK-FILM GAS SENSORS

    https://doi.org/10.1142/9789812835987_0030Cited by:0 (Source: Crossref)
    Abstract:

    Nanostructured semiconductor gas sensors are notoriously very sensitive to a huge number of environmental parameters, such as humidity and ambient temperature. It can be noticed that even if we keep the film temperature constant through an electronic feedback, variations of the ambient temperature lead to conductance variations. In this work we try to understand the nature of this dependence. In order to study the correlation between the response and the temperature of the film, of the air near the film and of the ambient temperature a thermal exchange mathematical model has been developed. A simple experimental configuration has been taken into account, with the heated film placed inside the protection cap, the whole sensor inside the test box and the test box subjected to environmental temperature, and the model was solved numerically and compared with the experimental data.