World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789812839527_0016Cited by:5 (Source: Crossref)
Abstract:

Many data analysis problems in metrology involve fitting a model to measurement data. Least squares methods arise in both the parameter estimation and Bayesian contexts in the case where the data vector is associated with a Gaussian distribution. For nonlinear models, both classical and Bayesian formulations involve statistical distributions that, in general, cannot be completely specified in analytical form. In this paper, we discuss how approximation methods and simulation techniques, including Markov chain Monte Carlo, can be applied in both a classical and Bayesian setting to provide parameter estimates and associated uncertainty matrices. While in the case of linear models, classical and Bayesian methods lead to the same type of calculations, in the nonlinear case the differences in the approaches are more apparent and sometimes quite significant.