World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

KALMAN FILTER TYPE SEQUENTIAL METHOD WITH STOPPING RULE FOR CALIBRATION OF MEASUREMENT INSTRUMENTS

    https://doi.org/10.1142/9789812839527_0023Cited by:0 (Source: Crossref)
    Abstract:

    In this paper a Kalman filter type algorithm for estimating a calibration characteristic of measurement instruments is presented. That approach gives a rigorous derivation of a recurrent algorithm for estimating the parameters of the calibration curve with the incorporation of the errors in reproducing the inputs. A new approach has been proposed for the generation of stopping rule in calibration characteristics identification problem. The proposed stopping rule defines the coefficients estimation halt and makes possible to determine sufficient number of measurements to attain required accuracy of calculated estimates. As an example, the problem of calibration of a differential pressure gauge using standard pressure setting devices (piston gauges) is examined.