World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ALLAN VARIANCE AND THE UNCERTAINTY OF AUTOCORRELATED MEASUREMENTS

    https://doi.org/10.1142/9789812839527_0056Cited by:0 (Source: Crossref)
    Abstract:

    In metrology, the uncertainty of the mean of repeated measurements is often calculated by the sample standard deviation of the measurements divided by the square root of the sample size. When the measurements are autocorrelated, in particular when they are from a stationary process, a recent paper in Metrologia (Zhang 2006) provided an approach to calculate the corresponding uncertainty. However, when the measurements are from a nonstationary process, how to assess their uncertainty remains unresolved. Allan variance or two-sample variance has been used for more than three decades as a substitute for the classical variance to characterize the stability of clocks or frequency standards when the underlying process is a 1/f noise process. Recently, from the point of view of the time domain, a paper in Metrologia (Zhang, 2008) studied the Allan variance and its properties for stationary processes, random walk, and long-memory processes such as the fractional difference processes This paper discusses the use of Allan variance as an alternative measure of uncertainty for measurements from time series models. The results show that the Allan variance is a better measure of the process variation than the classical variance of the random walk and the nonstationary fractional difference processes including the 1/f noise.