World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789813229426_0075Cited by:0 (Source: Crossref)
Abstract:

Over the last two decades transfer reactions have seen a resurgence following developments in methods to use them with exotic beams. An important step in this evolution was the ability to perform the (d,p) reaction on fission fragment beams using the inverse kinematics technique, built on the experience with light beams. There has been renewed interest in using (9Be, 8Be) and (13C, 12C) reactions to selectively populate single-particle like states that can be studied via their subsequent γ decay. These reactions have been successfully utilized in the 132Sn region. Additionally, our collaboration has recently performed experiments with GODDESS, a combination of the full ORRUBA detector and Gammasphere arrays. Another new direction is measuring neutrons from (d,n) reactions, performed in inverse kinematics, with the VANDLE array of plastic scintillators. Presented below is an overview of these new techniques and some of the early data from recent experiments.