World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Chapter 6: A Survey of Neural Models for Abstractive Summarization

    https://doi.org/10.1142/9789813274884_0006Cited by:0 (Source: Crossref)
    Abstract:

    In this chapter, we survey recent developments in abstractive summarization which use neural networks. Those methods achieve state-of-the-art ROUGE results for summarization tasks, especially when using short text as a source, such as single sentences or short paragraphs. We cover essential neural network concepts for abstractive summarization models. Because such models require massive training data, we also overview datasets used to train such models. We first describe the basic methodological concepts (word embeddings, sequence to sequence recurrent networks and attention mechanism). We provide didactic source code in Python to explain these basic concepts. We then survey four recent systems which, when combined, have resulted in dramatic improvements in single-document generic abstractive summarization in the past couple of years. These systems introduce re-usable techniques which address each aspect of the summarization challenge: dealing with large vocabulary while exploiting the high similarity between source and target documents; dealing with rare named-entities by detecting and copying them from the source to the target; avoiding repetition and redundancy by introducing a distractor mechanism; introducing sentence level assessment with the use of reinforcement learning.