World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXTRACTING PARTS OF 2D SHAPES USING LOCAL AND GLOBAL INTERACTIONS SIMULTANEOUSLY

    https://doi.org/10.1142/9789814273398_0012Cited by:2 (Source: Crossref)
    Abstract:

    Perception research provides strong evidence in favor of part based representation of shapes in human visual system. Despite considerable differences among different theories in terms of how part boundaries are found, there is substantial agreement on that the process depends on many local and global geometric factors. This poses an important challenge from the computational point of view. In the first part of the chapter, I present a novel decomposition method by taking both local and global interactions within the shape domain into account. At the top of the partitioning hierarchy, the shape gets split into two parts capturing, respectively, the gross structure and the peripheral structure. The gross structure may be conceived as the least deformable part of the shape which remains stable under visual transformations. The peripheral structure includes limbs, protrusions, and boundary texture. Such a separation is in accord with the behavior of the artists who start with a gross shape and enrich it with details. The method is particularly interesting from the computational point of view as it does not resort to any geometric notions (e.g. curvature, convexity) explicitly. In the second part of the chapter, I relate the new method to PDE based shape representation schemes.