World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LEAST-SQUARES JOINT DIAGONALIZATION OF A MATRIX SET BY A CONGRUENCE TRANSFORMATION

    This Research has been partially funded by the French National Research Agency (ANR) within the National Network for Software Technologies (RNTL), project Open-ViBE (Open Platform for Virtual Brain Environments).

    https://doi.org/10.1142/9789814277563_0010Cited by:4 (Source: Crossref)
    Abstract:

    The approximate joint diagonalization (AJD) is an important analytic tool at the base of numerous independent component analysis (ICA) and other blind source separation (BSS) methods, thus finding more and more applications in medical imaging analysis. In this work we present a new AJD algorithm named SDIAG (Spheric Diagonalization). It imposes no constraint either on the input matrices or on the joint diagonalizer to be estimated, thus it is very general. Whereas it is well grounded on the classical least-squares criterion, a new normalization reveals a very simple form of the solution matrix. Numerical simulations shown that the algorithm, named SDIAG (spheric diagonalization), behaves well as compared to state-of-the art AJD algorithms.