IMPROVED MPS METHODS FOR WAVE IMPACT CALCULATIONS
The paper presents improved MPS methods for the prediction of wave impact pressure on a coastal structure. By focusing on the momentum conservation properties of original MPS formulations, a new pressure gradient term is proposed in a momentum conservative form. As the first modification the original MPS formulation for pressure gradient is replaced by the new term which conserves both linear and angular momentum. Second modification is made by introducing a new source term for Poisson Pressure Equation (PPE). By revisiting the derivation of the PPE in MPS method, a higher-order source term is derived based on calculating the time differentiation of particle number density. Both first and second modifications are shown to significantly reduce the spurious fluctuations in particle number density (and thus pressure) field. The improved performance of the improved methods is demonstrated through the simulations of: a static fluid, a dam break with impact, a flip-through impact, and a slightly-breaking wave impact.