THE ENVIRONMENTAL HYDRAULICS OF TURBULENT BOUNDARY LAYERS
Turbulent flow over rough boundaries is a common occurrence in nature and the subject of much interest in a range of disciplines. It has long been recognized that the geometry of the boundary (or surface) dictates the flow and turbulence structure on a mean and instantaneous time scale. However, the mechanisms linking flow characteristics to roughness geometry remain poorly quantified, which has implications for our understanding of a variety of processes, particularly those occurring in the near-boundary region. It has been demonstrated that temporal and spatial variations in flow structure are sensitive to a range of geometric parameters describing the boundary geometry. We review the experimental evidence for rough boundary/flow interactions across different disciplines. A synthesis reveals that (1) different approaches have led to the adoption of a variety of parameters that are used to describe boundary roughness, and (2) that different criteria are used to evaluate the relative effects of boundary roughness. Moreover, (3) much of the experimental data relates to idealized surfaces that do not reflect the complexity of natural boundaries, or (4) is taken in low Reynolds number flows, and generally cannot be applied to aquatic flows in nature. The implications for our understanding of near-bed aquatic processes in turbulent boundary layers are discussed, and suggestions for future research approaches are presented.