World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789814313001_0007Cited by:4 (Source: Crossref)
Abstract:

The present paper is a review of the current state of Graph-Link Theory (graph-links are closely related to homotopy classes of looped interlacement graphs): a theory suggested in,1,2 see also,3 dealing with a generalisation of knots obtained by translating the Reidemeister moves for links into the language of intersection graphs of chord diagrams. In this paper we show how some methods of classical and virtual knot theory can be translated into the language of abstract graphs, and some theorems can be reproved and generalised to this graphical setting. We construct various invariants, prove certain minimality theorems and construct functorial mappings for graph-knots and graph-links. In this paper, we first show non-equivalence of some graph-links to virtual links.