World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789814317313_0002Cited by:0 (Source: Crossref)
Abstract:

This stage of our journey through the universe of one-dimensional binary Cellular Automata is devoted to period-1 rules, constituting the first of the six groups in which we systematized the 88 globally-independent CA rules.

The first part of this article is mainly dedicated to reviewing the terminology and the empirical results found in the previous papers of our quest. We also introduce the concept of the ω-limit orbit with the purpose of linking our work to the classical theory of nonlinear dynamical systems. Moreover, we present the basin tree diagrams of all period-1 rules — except for rule , which is trivial — along with their Boolean cubes and time-1 characteristic functions.

In the second part, we prove a theorem demonstrating that all rules belonging to group 1 have robust period-1 rules for any finite, and infinite, bit-string length L. This is the first time we give analytical results on the behavior of CA local rules for large values of L and, consequently, for bi-infinite bit strings.

The theoretical treatment is complemented by two remarkable practical results: an explicit formula for generating isomorphic basin trees, and an algorithm for creating new periodic orbits by concatenation. We also provide several examples of both of them, showing how they help to avoid tedious simulations.