World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FEEDBACK CONTROL OF TEARING MODES THROUGH ECRH WITH LAUNCHER MIRROR STEERING AND POWER MODULATION USING A LINE-OF-SIGHT ECE DIAGNOSTIC

    https://doi.org/10.1142/9789814340274_0004Cited by:0 (Source: Crossref)
    Abstract:

    A demonstration of real-time feedback control for autonomous tracking and stabilization of m/n = 2/1 tearing modes in a tokamak using Electron Cyclotron Resonance Heating and Current Drive (ECRH/ECCD) is reported. The prototype system on TEXTOR combines in the same sight-line an Electron Cyclotron Emission (ECE) diagnostic for tearing mode sensing and a steerable ECRH/ECCD antenna. The mode location is retrieved from the ECE measurements and serves as input for a control loop, which aligns the ECRH/ECCD deposition with the tearing modes by steering of a launcher mirror. The alignment is achieved by matching the mode location in the sensor spectrum with the fixed ECRH/ECCD actuator frequency. The control response is dominated by the response of the mechanical launcher. Analysis of the launcher dynamics receives special emphasis in the control design. In addition, the ECRH/ECCD power is modulated in phase with the rotation frequency of the O-point of the tearing modes using a feedback loop, which extracts the mode's frequency and phase from the ECE data. The experimental results demonstrate the capabilities of the control system to track and suppress tearing modes in real-time. A relatively simple control design suffices to meet the performance requirements demanded for effective tearing mode suppression.