World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COASTAL EVOLUTION MODELING AT MULTIPLE SCALES IN REGIONAL SEDIMENT MANAGEMENT APPLICATIONS

    https://doi.org/10.1142/9789814355537_0145Cited by:4 (Source: Crossref)
    Abstract:

    A numerical model called GenCade is introduced that simulates shoreline change relative to regional morphologic constraints upon which these processes take place. The evolution of multiple interacting coastal projects and morphologic features and pathways, such as those associated with inlets and adjacent beaches can also be simulated. GenCade calculates longshore sediment transport rates induced by waves and tidal currents, shoreline change, tidal inlet shoal and bar volume evolution, natural bypassing, and the fate of coastal restoration and stabilization projects. It is intended for project- and regional-scale applications, engineering decision support, and long-term morphology response to physical and anthropogenic forcing. Capabilities of the model are illustrated by an application to the south shore of Long Island, NY. The Long Island application has multiple coastal structures and features that are maintained to varying degrees of frequency. Cumulative response of the beaches from a variety of coastal projects leads to complexity in regional coastal management. GenCade is presented as a tool to unify management of local projects at regional scales.