A QUADRUPED ROBOT WITH ON-BOARDING SENSING AND PARAMETERIZED GAIT FOR STAIR CLIMBING
This paper presents the design of a quadrupedal robot that can automatically adapt its gait to, and climb, staircases of different configurations. This is accomplished by endowing the robot with a parameterized gait for stair climbing: First, a gait plan is synthesized that allows the robot to climb a stair of known dimensions. Second, the robot approaches a previously unseen stair and perceives its height and width by using an onboard vision system. Third, the synthesized gait plan is parameterized by the perceived estimates of height and width of the stair. Fourth, the robot executes the parameterized gait to climb the staircase; this thereby eliminates the need for a complex control system to achieve the same purpose. Whereas quadruped robots have previously demonstrated stair climbing, to the best of our knowledge, none have so far been capable of climbing stairs of variable height while simultaneously carrying all the needed perception, processing, and power modules on-board. Our work is one of the first successful attempts toward the above goal. Results with the robot climbing a variety of stair configurations demonstrate the effectiveness of our approach.