World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789814434393_0003Cited by:0 (Source: Crossref)
Abstract:

In Chap. 1 we introduced many fundamental concepts related to linear, time-invariant n-port networks. Some of the results, although very general, are difficult to apply. In Chap. 2 we discussed a useful description of the external behavior of a multiterminal network in terms of the indefinite-admittance matrix, and demonstrated how it can be employed effectively for the computation of network functions.

In practical applications, the most useful class of n-port or n-terminal networks is that of two-port or three-terminal networks. Many active devices of practical importance such as transistors are naturally subsumed in this class. In this chapter, we consider the specialization of the general passivity condition for n-port networks in terms of the more immediately useful two-port parameters. We introduce various types of power gains, sensitivity, and the notion of absolute stability as opposed to potential instability. Llewellyn's conditions for absolute stability and the optimum terminations for absolutely stable two-port networks at a single frequency will be derived.